Anchoring CoFe2O4 Nanoparticles on N‐Doped Carbon Nanofibers for High‐Performance Oxygen Evolution Reaction

نویسندگان

  • Tongfei Li
  • Yinjie Lv
  • Jiahui Su
  • Yi Wang
  • Qian Yang
  • Yiwei Zhang
  • Jiancheng Zhou
  • Lin Xu
  • Dongmei Sun
  • Yawen Tang
چکیده

The exploration of earth-abundant and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is of great significant for sustainable energy conversion and storage applications. Although spinel-type binary transition metal oxides (AB2O4, A, B = metal) represent a class of promising candidates for water oxidation catalysis, their intrinsically inferior electrical conductivity exert remarkably negative impacts on their electrochemical performances. Herein, we demonstrates a feasible electrospinning approach to concurrently synthesize CoFe2O4 nanoparticles homogeneously embedded in 1D N-doped carbon nanofibers (denoted as CoFe2O4@N-CNFs). By integrating the catalytically active CoFe2O4 nanoparticles with the N-doped carbon nanofibers, the as-synthesized CoFe2O4@N-CNF nanohybrid manifests superior OER performance with a low overpotential, a large current density, a small Tafel slope, and long-term durability in alkaline solution, outperforming the single component counterparts (pure CoFe2O4 and N-doped carbon nanofibers) and the commercial RuO2 catalyst. Impressively, the overpotential of CoFe2O4@N-CNFs at the current density of 30.0 mA cm-2 negatively shifts 186 mV as compared with the commercial RuO2 catalyst and the current density of the CoFe2O4@N-CNFs at 1.8 V is almost 3.4 times of that on RuO2 benchmark. The present work would open a new avenue for the exploration of cost-effective and efficient OER electrocatalysts to substitute noble metals for various renewable energy conversion/storage applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced graphene oxide anchoring CoFe2O4 nanoparticles as an effective catalyst for non-aqueous lithium-oxygen batteries.

CoFe2O4 nanoparticles were uniformly anchored on reduced graphene oxide by a facile solvothermal method. The obtained CoFe2O4/reduced graphene oxide (CoFe2O4/rGO) hybrid was employed as catalyst for Li-O2 batteries. It could effectively lower the ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) overpotentials of the batteries and deliver a large capacity of 12 235 mA h grGO(-...

متن کامل

Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction

A low cost, durable, and efficient electrocatalyst for oxygen reduction reactions (ORR) is essential for high-performance fuel cells. Here, we fabricated Co3O4 nanoparticles (NPs) anchored on N-doped mesoporous carbon nanofibers (Co3O4/NMCF) by electrospinning combined with the simple heat treatment. Within this composite, carbon nanofibers possess a mesoporous structure, contributed to obtain ...

متن کامل

Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction

Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT  were  investigated  by  using scanning  electron  microscope  (SEM)  and energydispersive X-...

متن کامل

Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon

The development of effective oxygen electrode catalysts for renewable energy technologies such as metal-air batteries and fuel cells remains challenging. Here, we prepared a novel high-performance oxygen reduction reaction (ORR) catalyst comprised of Fe₂N nanoparticles (NPs) in situ decorated over an N-doped porous carbon derived from pomelo peel (i.e., Fe₂N/N-PPC). The decorated Fe₂N NPs provi...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017